Myo:Hauptseite

Aus SWLabWiki
(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
(Project-Status)
(Project-Team)
Zeile 19: Zeile 19:
 
* [[ Benutzer:a_dash15 | Ayushman Dash ]]
 
* [[ Benutzer:a_dash15 | Ayushman Dash ]]
 
* [[ Benutzer:a_sahu15 | Amit Sahu ]]
 
* [[ Benutzer:a_sahu15 | Amit Sahu ]]
 +
 +
* Kontakt: [mailto:swlab-myo swlab-myo]
  
 
=Project-Status=
 
=Project-Status=

Version vom 7. November 2016, 15:32 Uhr

Inhaltsverzeichnis

Description

Hier entwickeln Master-Studierende eine Software, um mit einem speziellen Armband (MYO) eine Gestenerkennung für Gebärdensprache zu realisieren.

Gesture recognition with the help of armband sensor.

Targets

  • ..
  • ...

Project-Team

Project-Status

  • We started with the task of digit recognition, once the band is worn by subject and a specific digit gesture is made. Once this task is completed, our assumption is the same model can be extended to alphabets and other complex gesture recognition.
  • We have conducted experiments and collected data of 16 people so far. This data is further used for model generation and analysis for recognition of gestures based on specific feature set in each gesture.
  • For this we have utilized and analysed 4 classical machine learning approaches(Hidden Markov Models-HMM, Support Vector Machines-SVM, Naive Bayes-NB, K Nearest Neighbor-KNN) and Artificial Neural Networks approach(Long short term memory -LSTM).
  • Created two sets of training instances
    • One with 10 instances per class
    • One with 20 instances per class
  • Evaluated models using the following algorithms,
    • HMM - Raw Data
    • HMM - Windowed Features
    • Naive Bays
    • KNN (1 neighbour)
    • SVM (Parameters using grid search)
  • Analysed the accuracy precision, F-Score for all the models in all the folds
  • Analysed the features and tried to decide which features to eliminate and which features are not significant using.
    • Parallel Coordinates
    • Andrews Curves
  • Now we aim to wrap up these results via an application that is capable of capturing, analyzing (fixed set of)gestures in real time and classifying them. Once this is done we can give a live demo/presentation of our results so far and continue our work towards more complex and higher order gestures.

Internal Documents

Die hier verlinkten weiteren Seiten zu diesem Projekt sind nur für angemeldete SWLab-Teilnehmer lesbar.

Meine Werkzeuge